Uses of Class
de.tilman_neumann.jml.factor.base.congruence.AQPair
-
-
Uses of AQPair in de.tilman_neumann.jml.factor.base.congruence
Subclasses of AQPair in de.tilman_neumann.jml.factor.base.congruence Modifier and Type Class Description classPartialBase class for partial congruences.classPartial_1LargeA partial congruence having 1 large factor.classPartial_2LargeA partial congruence having 2 distinct large factors.classPartial_nLargeA partial congruence having an arbitrary number of large factors.classSmooth_1LargeSquareA smooth congruence with 1 large factor contained as a square.classSmooth_nLargeSquaresA smooth congruence having an arbitrary number of large factors.classSmooth_PerfectA perfect smooth congruence.classSmooth_SimpleA smooth congruence from a single AQ-pair.Methods in de.tilman_neumann.jml.factor.base.congruence that return AQPair Modifier and Type Method Description AQPairAQPairFactory. create(BigInteger A, SortedIntegerArray smallFactors, SortedLongArray bigFactors)Methods in de.tilman_neumann.jml.factor.base.congruence that return types with arguments of type AQPair Modifier and Type Method Description Set<AQPair>Smooth_Composite. getAQPairs()Set<AQPair>Smooth_Simple. getAQPairs()Set<AQPair>Smooth. getAQPairs()Methods in de.tilman_neumann.jml.factor.base.congruence with parameters of type AQPair Modifier and Type Method Description booleanCongruenceCollector. add(AQPair aqPair)Add a new elementary partial or smooth congruence.Method parameters in de.tilman_neumann.jml.factor.base.congruence with type arguments of type AQPair Modifier and Type Method Description voidSmooth_Composite. addMyAQPairsViaXor(Set<AQPair> targetSet)voidSmooth_Simple. addMyAQPairsViaXor(Set<AQPair> targetSet)voidSmooth. addMyAQPairsViaXor(Set<AQPair> targetSet)Addthis's AQPairs to the target set via xor.voidCongruenceCollectorParallel. collectAndProcessAQPairs(List<AQPair> aqPairs)Collect AQ pairs and run the matrix solver if appropriate.Constructor parameters in de.tilman_neumann.jml.factor.base.congruence with type arguments of type AQPair Constructor Description Smooth_Composite(Set<? extends AQPair> aqPairs)Constructor from several AQ-pairs. -
Uses of AQPair in de.tilman_neumann.jml.factor.base.matrixSolver
Method parameters in de.tilman_neumann.jml.factor.base.matrixSolver with type arguments of type AQPair Modifier and Type Method Description voidMatrixSolver. processNullVector(Set<AQPair> aqPairs)voidFactorTest. testForFactor(Set<AQPair> aqPairs)Test if a square congruence A^2 == Q (mod kN) gives a factor of N.voidFactorTest01. testForFactor(Set<AQPair> aqPairs)Test if a square congruence A^2 == Q (mod kN) gives a factor of N. -
Uses of AQPair in de.tilman_neumann.jml.factor.cfrac.tdiv
Methods in de.tilman_neumann.jml.factor.cfrac.tdiv that return AQPair Modifier and Type Method Description AQPairTDiv_CF. test(BigInteger A, BigInteger Q)Check if Q is smooth (factors completely over the prime base) or "sufficiently smooth" (factors almost over the prime base).AQPairTDiv_CF01. test(BigInteger A, BigInteger Q)AQPairTDiv_CF02. test(BigInteger A, BigInteger Q)AQPairTDiv_CF03. test(BigInteger A, BigInteger Q)AQPairTDiv_CF63_01. test(BigInteger A, long Q)AQPairTDiv_CF63_02. test(BigInteger A, long Q)AQPairTDiv_CF63. test(BigInteger A, long Q)Check if Q is smooth (factors completely over the prime base) or "sufficiently smooth" (factors almost over the prime base). -
Uses of AQPair in de.tilman_neumann.jml.factor.siqs.tdiv
Methods in de.tilman_neumann.jml.factor.siqs.tdiv that return types with arguments of type AQPair Modifier and Type Method Description List<AQPair>TDiv_QS_1Large_UBI. testList(List<Integer> xList)List<AQPair>TDiv_QS_1Large. testList(List<Integer> xList)List<AQPair>TDiv_QS_2Large_UBI_BarrettD. testList(List<Integer> xList)List<AQPair>TDiv_QS_2Large_UBI. testList(List<Integer> xList)List<AQPair>TDiv_QS_nLarge_UBI. testList(List<Integer> xList)List<AQPair>TDiv_QS_nLarge. testList(List<Integer> xList)List<AQPair>TDiv_QS_Small. testList(List<Integer> xList)List<AQPair>TDiv_QS. testList(List<Integer> xList)Test if Q(x) is smooth (factors completely over the prime base) or "sufficiently smooth" (factors almost over the prime base) for all x in the given list.
-