Uses of Class
de.tilman_neumann.jml.precision.Scale
-
-
Uses of Scale in de.tilman_neumann.jml
Methods in de.tilman_neumann.jml with parameters of type Scale Modifier and Type Method Description static BigDecimalHarmonicNumbers. harmonic_lowerBound(BigInteger n, Scale scale)Lower bound for the harmonic number H_n.static BigDecimalHarmonicNumbers. harmonic_upperBound(BigInteger n, Scale scale)Upper bound for the harmonic number H_n. -
Uses of Scale in de.tilman_neumann.jml.base
Methods in de.tilman_neumann.jml.base with parameters of type Scale Modifier and Type Method Description static BigDecimalBigDecimalMath. add(BigDecimal a, BigRational b, Scale resultScale)Computes the sum of a and b accurate to the given resultScale.
Scale is the natural accuracy measure for additions because for each argument, each piece of it (bit, digit, ...) makes its own independent contribution to the result scale.static BigDecimalBigDecimalMath. divide(BigDecimal a, BigDecimal b, Scale resultScale)Division with guaranteed precision.static BigDecimalBigDecimalMath. divide(BigDecimal a, BigInteger b, Scale resultScale)Division by an integer.static BigDecimalBigDecimalMath. multiply(BigDecimal a, BigRational b, Scale resultScale)BigDecimalBigRational. toBigDecimal(Scale decPrec)Converts this to a BigDecimal with decPrec digits precision.StringBigRational. toString(Scale decPrec)Converts this into a string with the given decimal digits precision. -
Uses of Scale in de.tilman_neumann.jml.hyperbolic
Methods in de.tilman_neumann.jml.hyperbolic with parameters of type Scale Modifier and Type Method Description static BigDecimalArcCosH. acosh1(BigDecimal x, Scale scale)Computes the "++" branch of acosh(x) = + ln(x + sqrt(x^2-1)).static BigDecimalArcCosH. acoshAbs(BigDecimal x, Scale scale)The absolute value of acosh(x) implemented by ln() formula.static BigDecimalArcCotH. acoth(BigDecimal x, Scale scale)acoth(x) implemented by ln() formula.static BigDecimalArcSinH. asinh(BigDecimal x, Scale scale)y = asinh(x) implemented by ln() formula, for all real x.static BigDecimalArcTanH. atanh(BigDecimal x, Scale scale)atanh(x) implemented by ln() formula. -
Uses of Scale in de.tilman_neumann.jml.powers
Methods in de.tilman_neumann.jml.powers with parameters of type Scale Modifier and Type Method Description static BigDecimalPow. pow(BigDecimal x, int n, Scale resultScale) -
Uses of Scale in de.tilman_neumann.jml.precision
Methods in de.tilman_neumann.jml.precision that return Scale Modifier and Type Method Description ScaleScale. add(int n)ScaleScale. multiply(int multiplier)static ScaleScale. of(double x)static ScaleScale. of(float x)static ScaleScale. of(BigDecimal x)static ScaleScale. valueOf(int digits)Methods in de.tilman_neumann.jml.precision with parameters of type Scale Modifier and Type Method Description intScale. compareTo(Scale other) -
Uses of Scale in de.tilman_neumann.jml.roots
Methods in de.tilman_neumann.jml.roots with parameters of type Scale Modifier and Type Method Description static BigDecimalRootsReal. ithRoot(BigDecimal x, int i, Scale resultScale)Compute i.th root of x.static BigDecimalRootsReal. ithRoot(BigDecimal x, int i, BigDecimal guess, Scale resultScale)Compute the i.th root with initial guess.static BigDecimalSqrtReal. sqrt(BigDecimal x, Scale resultScale)Compute square root.static BigDecimalSqrtReal. sqrt(BigDecimal x, BigDecimal guess, Scale resultScale)Compute square root with initial guess. -
Uses of Scale in de.tilman_neumann.jml.transcendental
Methods in de.tilman_neumann.jml.transcendental with parameters of type Scale Modifier and Type Method Description static BigDecimalAgm. agm(BigDecimal a, BigDecimal b, Scale outScale)Arithmetic-geometric mean of a and b.static BigDecimalExp. exp(BigDecimal w, Scale outScale)Compute exp(w) using a more powerful argument reduction.static BigDecimalEulerConstant. gamma(Scale outScale)static BigDecimalLn. ln(BigDecimal x, Scale outScale)Compute the natural logarithm of x, for x>0.static BigDecimalLn. ln2(Scale outScale)Faster ln2 implementation, computing the series expansion of 2^(1/k) for some optimally chosen k.static BigDecimalPi. pi(Scale scale)Compute Pi using the approximation formula found by Plouffe and the Borwein brothers also used in mpfr.
-